edexcel :\#\#

Mark Scheme

 (Results)Summer 2012

GCE Chemistry (6CHO2) Paper 01 Application of Core Principles of Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2012
Publications Code US031859
All the material in this publication is copyright
© Pearson Education Ltd 2012

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. Questions labelled with an asterix (*) are ones where the quality of your written communication will be assessed.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 ~ (a) ~}$	B		
(b)	C		$\mathbf{1}$
(c)	D		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 (a)}$	C		$\mathbf{1}$
(b)	D		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{3}$	D		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{4}$	A		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{5}$	A		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{6}$	D		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{7}$	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{8}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{9}$	D		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 0}$	A		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 1}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 2}$	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 3}$ (a)	C		$\mathbf{1}$
(b)	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 4}$	A		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 5}$	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 6}$	A		$\mathbf{1}$

Section B

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7}$ (a)(i)	More O3 is formed/equilibrium shifts to the right (1)	equilibrium shifts to the left (scores zero overall) (increase in temperature) favours endothermic reaction ALLOW (Forward) reaction is endothermic	$\mathbf{2}$
ALLOW DH is positive for endothermic (1) IGNORE references to rate and pressure change			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7}$ (a)(ii)	The mixture becomes darker ALLOW: more blue/bluer	(1)	Just 'more ozone' Blue gas formed Mixture becomes blue
	(Increase in pressure) favours side with fewer moles/molecules (of gas) (so equilibrium shifts to the right)	Atoms/particles	$\mathbf{2}$
IGNORE references to rate	(1)		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (a) (i i i)}$	The equilibrium is dynamic OR Forward \& reverse reactions still occurring		$\mathbf{1}$
	OR O_{3} continues to be formed from O_{2} at the same rate as O_{3} decomposes		
	OR O_{3} continues to be formed from O_{2} with no nett change in composition		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (b) (i)}$	In (b) Any units given must be correct. Penalise once IGNORE SF except 1 SF. Penalise once		$\mathbf{1}$
	TE at each step through calculation Amount of thiosulfate $=0.0155 \times 25.50 \times 10^{-3}$ $=3.9525 \times 10^{-4}(\mathrm{~mol})$ Or correct answer with no working		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7}$	$1 \mathrm{~mol} \mathrm{I}_{2}$ reacts with $2 \mathrm{~mol} \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}$		$\mathbf{2}$
$\mathbf{(b) (i i)}$	ALLOW 'using equation 2' \therefore Amount of iodine $=$ answer in (b)(i) / 2 (1)		
	$=3.9525 \times 10^{-4} / 2=1.97625 \times 10^{-4}(\mathrm{~mol})(\mathbf{1)}$		
	Correct answer with no working (2)		
	If ratio reversed, TE only if ratio is stated		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7}$ (b) (iii)	Amount of iodine $=$ Amount of ozone $=$ answer in (b)(ii) $=1.97625 \times 10^{-4}(\mathrm{~mol})$		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7}$	Volume of ozone $=$ answer in (b)(iii) $\times 0.024$ $=1.97625 \times 10^{-4} \times 0.024$ (b) (iv) $.743 \times 10^{-6}\left(\mathrm{~m}^{3}\right.$ in $\left.100 \mathrm{~m}^{3}\right)$		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 17 \\ & \text { (b) (v) } \end{aligned}$	Volume of ozone in ppm $\begin{aligned} & =\text { answer in (b)(iv) } \times 10^{6} \div 100 \\ & =4.743 \times 10^{-6} \times 10^{4} \\ & =4.743 \times 10^{-2}=0.04743(\mathrm{ppm}) \end{aligned}$		1

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 17 \\ & \text { (b) (vi) } \end{aligned}$	(Increase reliability) because a mean (average) value can be used/ anomalous results (ALLOW outliers) may be identified ALLOW the titration can be repeated (Decrease accuracy) because smaller titration volume/volume of thiosulfate ALLOW volume of (acidified) KI ALLOW 'amount' for 'volume' so percentage error/uncertainty will increase The \% error mark is NOT stand alone but ‘smaller volume increases percentage error' scores final mark	Experiment can be repeated More results	3

Question Number	Acceptable Answers	Reject	Mark
17(c)	$\begin{align*} & \text { Oxygen in } \mathrm{O}_{3}=0 \text { and } \mathrm{O}_{2}=0 \tag{1}\\ & \text { in } \mathrm{H}_{2} \mathrm{O}=-2 / 2- \tag{1} \end{align*}$ Ozone acts as an oxidizing agent. ALLOW 'is reduced' / oxidizes I $^{-}$ (1) Third mark is stand alone; No TE on incorrect oxidation numbers		3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (d)}$	(Residual) ozone is (quickly) converted into (odourless) oxygen OR chlorine has a persistent/unpleasant odour or taste OR Chlorine forms HCI/ hydrochloric acid (in drinking water)	(Oxygen) and water	$\mathbf{1}$
Ozone is odourless/ cheap /more available Chlorine forms free radicals/ hazardous compounds/ reacts with hydrogen/ damages ozone layer			

Question Number	Acceptable Answers	Reject	Mark
$\begin{array}{\|l\|} \hline 18 \\ (a)(i) \end{array}$	X = 2-chloro-2-methylpropane ALLOW $\mathbf{X}=2,2$-chloromethylpropane $\mathbf{X}=2$-methyl-2-chloropropane $\mathbf{X}=2,2$-methylchloropropane X = 2-chloromethylpropane (1) $\mathbf{Z}=2$-methylpropan-2-ol (1) ALLOW methylpropan-2-ol ALLOW propane for propan IGNORE omission of (or extra) commas and hyphens IGNORE spaces	2-methylchloropropane Hydroxy for -ol	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8}$ $\mathbf{(a) (i i)}$		Cl	Any other type of structure

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8}$	Tertiary		
(a)(iii)	ALLOW recognisable abbreviations: $3^{y} / 30$		$\mathbf{1}$

Question Number	Acceptable Answers		Reject
$\mathbf{1 8}$	Nucleophilic	(1)	
(b)(i)	Substitution	(1)	
			$\mathrm{S}_{\mathrm{N}} 2$

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 18 \\ & \text { (b) (ii) } \end{aligned}$	Movement (ALLOW Transfer/donation)/ start and finish positions of an electron pair ALLOW two electrons for pair IGNORE bonded/unbonded for electrons IGNORE heterolytic bond breaking and bond formation	electrons	1
Question Number	Acceptable Answers	Reject	Mark
$\begin{align*} & 18 \tag{1}\\ & \text { (b) (iii) } \end{align*}$	These marks are stand alone Trigonal (ALLOW triangular) planar/ planar with bond angles of 120응 3 bond pairs (no lone pairs) of electrons ALLOW 3 pairs of electrons around the central atom/ carbon Arranged at minimum repulsion ALLOW maximum separation / distance apart IGNORE references to the positive charge	Bonds or 'areas of electron density' for pairs Just '3 pairs of electrons' Just 'repel' Repel as much as possible	3

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 18 \\ & \text { (b) (iv) } \end{aligned}$	(Type of reaction:) elimination ALLOW dehydrohalogenation IGNORE nucleophilic Product: 2-methylpropene ALLOW methylpropene 2-methylprop-1-ene Methylprop-1-ene any correct formula e.g. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CCH}_{2}$ ALLOW $\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}$ (1) If a displayed formula or part displayed formula is used, all the atoms must be shown.	2-methylprop-2-ene methylprop-2-ene	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8}$			
$\mathbf{(c) (i)}$	If a displayed formula or part displayed formula is used, all the atoms must be shown. If a carbon is clearly shown bonded to the H in OH, penalise once in (c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\begin{align*} & 18 \tag{1}\\ & \text { (c) (ii) } \end{align*}$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ ALLOW $\begin{equation*} \left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{OH} \tag{1} \end{equation*}$ ALLOW OR If 2 correct carboxylic acids are shown, 1 out of 2	Aldehydes	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9}\left(\begin{array}{ll}2 \mathrm{KNO}_{3} \rightarrow 2 \mathrm{KNO}_{2}+\mathrm{O}_{2} \\ \text { Or multiples or equation divided by 2 }\end{array}\right.$	ALLOW O_{2} on LHS if balanced by additional O_{2} on RHS IGNORE state symbols even if incorrect	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9}$ $\mathbf{(a) (i i)}$	$2 \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow 2 \mathrm{CaO}+4 \mathrm{NO}_{2}+\mathrm{O}_{2}$ Or multiples or equation divided by 2		$\mathbf{1}$
ALLOW O_{2} on LHS if balanced by additional O_{2} on RHS	IGNORE state symbols even if incorrect		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9}$ (b)	Brown gas (ALLOW fumes or vapour) evolved IGNORE Effervescence/bubbles (1)		2
EITHER (White) solid melts (and then solidifies/freezes) OR (Colourless) liquid forms IGNORE white solid formed	(1)		

Question Number	Acceptable Answers	Reject	Mark
19 (c)	Penalise any omission of reference to ion in MP 1 only but calcium ions or Ca^{2+} and potassium ions or K^{+}are equivalent Marking Point 1 Calcium ions have greater positive charge (than potassium ions) OR Calcium ions $2+$ but potassium ions $1+$ OR Ca ${ }^{2+}$ but K^{+} OR calcium ions are smaller (than potassium ions) OR calcium ions have greater charge density Marking Point 2 \therefore Calcium (ions) more polarising or cause greater distortion Marking Point 3 Of... nitrate (ion) OR anion OR $\mathrm{N}-\mathrm{O} / \mathrm{N}=\mathrm{O}$ (bond) OR nitrate electron cloud Reverse argument for K^{+}gains full marks		3

Section C

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0}$ $\mathbf{(a) (i)}$	(A greenhouse gas) traps/absorbs/ reflects IR (radiation) / heat (re-radiating) from the earth	(1)	(heat) from the sun
ALLOW Back to the earth	From the earth's atmosphere		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0}$ (a)(ii)	(water is a greenhouse gas) because it absorbs infrared (IR) radiation (1)	Reflects (for absorbs) Heat (for IR) Traps IR/heat from the earth	$\mathbf{2}$
	The polarity of the water molecule changes when its bonds vibrate ALLOW Water is a polar molecule/has polar bonds		

Question Number	Acceptable Answers	Reject	Mark		
$\mathbf{2 0}$	$\mathrm{CH}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}_{2}+4 \mathrm{H}_{2}$	$\mathrm{CH}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow$	$\mathbf{2}$		
$\mathbf{(a) (\text { iii) }}$	$\mathrm{CO}_{2}+8 \mathrm{H}$ $\mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}+3 \mathrm{H}_{2}$ Species (1) balance (1)	$\mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}$ +6 H			
	No TE on incorrect species			\quad	
:---					

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0}\left(\begin{array}{l}\text { Hydrogen is obtained from the water } \\ \text { (av) } \\ \text { (as well as from the methane) } \\ \text { OR Easier to capture the } \mathrm{CO}_{2} \text { in a } \\ \text { chemical plant than in a moving } \\ \text { vehicle } \\ \text { ALLOw } \\ \text { Higher yield of/more hydrogen }\end{array}\right.$	$\mathbf{1}$		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0}\left(\begin{array}{ll}\text { (a)(v) } & \begin{array}{l}\text { (High cost of) energy needed (to } \\ \text { generate the pressure) }\end{array} \\ \begin{array}{l}\text { OR } \\ \text { (High cost of) construction/ } \\ \text { maintenance of the equipment }\end{array} & \begin{array}{l}\text { High pressure is } \\ \text { expensive }\end{array} \\ \begin{array}{l}\text { OR } \\ \text { (High cost of) the equipment } \\ \text { required to withstand / contain the } \\ \text { high pressure }\end{array} & \mathbf{1} \\ \hline\end{array}\right.$			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0}$			
(b)(i)	ALLOW		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0}$ (b)(ii)	Comment Any incorrect statement cancels a correct one. The order of the marking points is not important. Marking Point 1		4
	Ammonia has hydrogen bonds (as well as London forces) IGNORE permanent dipole-dipole forces here		
	Marking Point 2 Methane (only) has London / dispersion forces ALLOW van der Waals forces Marking Point 3	(1)	

No TE on incorrect species

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 20 \\ & (c)(i i) \end{aligned}$	Any two Energy density / energy per unit volume of the fuels ALLOW miles per gallon or equivalent Cost / Ease of Production Storage Transport Liquefaction Ease of ignition Corrosiveness IGNORE references to Environment Renewability Safety Boiling temperatures Atom economy		2
Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 20 \\ & \text { (c) (iii) } \end{aligned}$	Leaks would be easy to detect IGNORE reference to spillage		1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0}$	Ammonia is difficult to ignite/does not burn/combust easily	Ammonia is unreactive	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0}$ (c)(v)	No because hydrogen is obtained from fossil fuels (and ammonia from hydrogen)		$\mathbf{1}$
OR Yes because hydrogen can be obtained by electrolysis of water using renewable energy sources			

Telephone 01623467467
Fax 01623450481
Email publication．orders＠edexcel．com
Order Code xxxxxxxx Summer 2012

Rewarding Learning
www.edexcel.com

Pearson Education Limited. Registered company number 872828
with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

